On-chip Isotachophoresis for Separation of Ions and Purification of Nucleic Acids
نویسندگان
چکیده
Electrokinetic techniques are a staple of microscale applications because of their unique ability to perform a variety of fluidic and electrophoretic processes in simple, compact systems with no moving parts. Isotachophoresis (ITP) is a simple and very robust electrokinetic technique that can achieve million-fold preconcentration and efficient separation and extraction based on ionic mobility. For example, we have demonstrated the application of ITP to separation and sensitive detection of unlabeled ionic molecules (e.g. toxins, DNA, rRNA, miRNA) with little or no sample preparation and to extraction and purification of nucleic acids from complex matrices including cell culture, urine, and blood. ITP achieves focusing and separation using an applied electric field and two buffers within a fluidic channel system. For anionic analytes, the leading electrolyte (LE) buffer is chosen such that its anions have higher effective electrophoretic mobility than the anions of the trailing electrolyte (TE) buffer (Effective mobility describes the observable drift velocity of an ion and takes into account the ionization state of the ion, as described in detail by Persat et al.). After establishing an interface between the TE and LE, an electric field is applied such that LE ions move away from the region occupied by TE ions. Sample ions of intermediate effective mobility race ahead of TE ions but cannot overtake LE ions, and so they focus at the LE-TE interface (hereafter called the "ITP interface"). Further, the TE and LE form regions of respectively low and high conductivity, which establish a steep electric field gradient at the ITP interface. This field gradient preconcentrates sample species as they focus. Proper choice of TE and LE results in focusing and purification of target species from other non-focused species and, eventually, separation and segregation of sample species. We here review the physical principles underlying ITP and discuss two standard modes of operation: "peak" and "plateau" modes. In peak mode, relatively dilute sample ions focus together within overlapping narrow peaks at the ITP interface. In plateau mode, more abundant sample ions reach a steady-state concentration and segregate into adjoining plateau-like zones ordered by their effective mobility. Peak and plateau modes arise out of the same underlying physics, but represent distinct regimes differentiated by the initial analyte concentration and/or the amount of time allotted for sample accumulation. We first describe in detail a model peak mode experiment and then demonstrate a peak mode assay for the extraction of nucleic acids from E. coli cell culture. We conclude by presenting a plateau mode assay, where we use a non-focusing tracer (NFT) species to visualize the separation and perform quantitation of amino acids.
منابع مشابه
An Injection-Molded Device for Purification of Nucleic Acids From Whole Blood Using Isotachophoresis
We present a novel microchip device for purification of nucleic acids from 25 μL biological samples using isotachophoresis (ITP). The device design incorporates a custom capillary barrier structure to facilitate robust sample loading. The chip uses relatively large channel dimensions to reduce processing time, minimize Joule heating, and achieve high extraction efficiency. To reduce pH changes ...
متن کاملSimultaneous purification and fractionation of nucleic acids and proteins from complex samples using bidirectional isotachophoresis Supporting Information
This document contains the following supplementary figures and information further describing our bidirectional ITP-based technique for simultaneous purification and fractionation of nucleic acids and proteins from complex biological samples: • Figure S-1: Images of on-chip DNA ITP zones and protein ITP zones • Figure S-2: Experimental setup and procedure • Figure S-3: Simulation and visualizat...
متن کاملBacterial RNA extraction and purification from whole human blood using isotachophoresis.
We demonstrate a novel assay for physicochemical extraction and isotachophoresis-based purification of 16S rRNA from whole human blood infected with Pseudomonas putida . This on-chip assay is unique in that the extraction can be automated using isotachophoresis in a simple device with no moving parts, it protects RNA from degradation when isolating from ribonuclease-rich matrices (such as bloo...
متن کاملSimultaneous purification and fractionation of nucleic acids and proteins from complex samples using bidirectional isotachophoresis.
We report on our efforts to create an on-chip system to simultaneously purify and fractionate nucleic acids and proteins from complex samples using isotachophoresis (ITP). We have developed this technique to simultaneously extract extracellular DNA and proteins from human blood serum samples and deliver these to two separate output reservoirs on a chip. The purified DNA is compatible with quant...
متن کاملIsotachophoresis with ionic spacer and two-stage separation for high sensitivity DNA hybridization assay.
We present an on-chip electrophoretic assay for rapid and high sensitivity nucleic acid (NA) detection. The assay uses isotachophoresis (ITP) to enhance NA hybridization and an ionic spacer molecule to subsequently separate reaction products. In the first stage, the probe and target focus and mix rapidly in free solution under ITP. The reaction mixture then enters a region containing a sieving ...
متن کامل